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ABSTRACT

This exposition presents a method for incorporating a technique
known as "splitting the bump" within an elimination form reinversiom
algorithm. This procedure is designed to reduce fill-in during rein-
version and should improve the efficiency of linear programming systems

which already use the superior elimination form of the inverse.
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I. INTRODUCTION

Current production linear programming systems are designed to
handle problems with 8000 to 16,000 rows and 1000 row problems are
considered to be medium sized (see [10, 17). Fortunately real pro-
blems tend to be sparse (the density of the constraint matrix is
often less than 1% - see [1, 2, 9, 14, 15]). Hence, a basis for a
1000 row problem may have only (1000) (1000) (1X) = 10,000 nonzero
entries. However, the inverse (which is required for the revised
simplex algorithm) may be quite dense having almost a million nonzero
elements. Consequently, one of the most important design considerations
for a computer implementation of the revised simplex algorithm for general
linear programs is the technique used to maintain and update the basis
inverse.

In order to minimize the storage required to implement this algo-
rithm, production linear programming systems maintain the inverse of
the basis in either product or elininatign form (see [1, 3, 8, 12, 17]).
Computationally the inverse is stored as a sequence of vectors, known
as eta vectors, and the complete list of the eta's is called the ETA
File. Each basis change (pivot) results in appending at least one eta
vector to the ETA File. Since both the time per pivot and numerical
error increase as the length of the ETA File increases, it is necessary
to periodically obtain a new factorization of the basis inverse. This
process of obtaining a new factorization is called xreinversion. The
objective of a reinversion algorithm is to obtain a factored inverse
(i.e., ETA File) in which the sparsity characteristics of the original

basis are preserved as much as possible.
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The simplest reinversion technique for a given m-colummn basis
can be thought of as successively reducing the basis to an identity
matrix via m pivot operations. The matrices which accomplish this

reduction constitute the ETA File, often refered to as a product form

factorization. Out of this simple approach, reinversion techniques

have evolved which attempt to obtain a sparse factorization by selection
of pivot positions, involving a reordering of the columns of the basis

and a conceptual reordering of the rows. The row and colummn pivot
ordering employed in reinversion is usually called the pivot agenda.
Markowitz [11] pioneered the work in this area. Another technique

(see [8] and [13]) which has been used in conjunction with the reinversion
algorithms is a technique known as splitting the bump. All these ideas 1
were directed toward developing a sparse representation using the product |
form of the inverse. Recently, however, computational evidence indicates
that the elimination form factorization is superior to the product form
factorization (with respect to both storage requirements and speed (see [2]).
The Hellerman-Rarick algorithm can be easily modified to accommodate

an elimination form reinversion, but it is not obvious how one may im-

plement the technique known as "splitting the bump" and still make it

possible to maintain the elimination form of the inverse during later
simplex iterations. The objective of this exposition is to present a
reinversion algorithm in which one may achieve some of the benefits of

the "splitting the bump technique" when using the elimination form

of the inverse.




For this exposition, the ith column of the m x m matrix B is denoted

by B(i). The symbol ei denotes the m-component column vector having

:lth component one and all other components zero. The symbol n denotes

an m-component column vector and n1 denotes the :I.th component of this vector.




II. FACTORIZATION ALGORITHMS

Let B be any m by m nonsingular matrix. In this section we present
two algorithms for obtaining a factorization of B-l. The first algorithm
produces a product form factorization which corresponds to the method
for solving a system of linear equations known as Gauss-Jordan reduction
while the second algorithm produces an elimination form factorization
which corresponds to a Gauss reduction (see [4]).

By row and column interchanges, B may be placed in the following

form:

where Bl and 33 are lower triangular matrices with nonzeroes on their

diagonals. We assume that if Bz is nonvacuous, every row and column
has at least two nonzero entries, so that no rearrangement of 32 can
expand the size of 8! or 8. 32 is called the bump, mealt, or heart
section. We further require the heart section to assume the following

form:
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where Gk's are either vacuous or lower triangular with nonzeroes on

the diagonal. The only partitions in B having columns with nonzeroes
above the diagonal are the Fk's which are called external bumps. The
columns extending above the diagonal are called spikes or spike columns.

An external bump is characterized as follows:

(1) the last column of an external bump will
be a spike with a nonzero lying in the
topmost row of the external bump, and

(i1) the nonspike columns have nonzero diagonal

elements.

The algorithms of Hellerman and Rarick [6, 7] produce such a structure
for any nonsingular matrix B, and we shall call a matrix having this
structure an HR matrix.

The product form factorization algorithm for an HR matrix is

given as follows:
ALG 1: PRODUCT FORM FACTORIZATION FOR A HR MATRIX

0. Initialization
Set 1 «+ 1 and B + B(1).




1. Obtain New ETA

1/81, for k = §

Set nk £

'Bklai' otherwise,

n, for k = 1

ck. otherwise.

and set Ei (k) «

(Note: only n and i need be saved in the ETA File)

2. Test For Termination

If 1 = m, terminate, otherwise, i « i + 1.
3. Test For Spike

If B(i) is not a spike, set B + B(i) and go to 1.
4. Spike Update

Let B(k) correspond to the first column of the external bump

containing B(i). Set B « F.i-l EkB(i).
5. Swap Spikes 1§ Pivot Element Equals Zero

If B:l ¥ 0, go to 1; otherwise, there is some spike B(j) in the

same external bump having j > i such that the 1th

E:l-l i-1

component of

EkB(J) is nonzero. Set B « E sos EkB(j). interchange

B(i) and B(j) and go to 1.

In practice, the test for a zero pivot element in step 5 is muy
replaced by a tolerance test. Let TOL denote the tolerance to be used in
the test. If | Bil < TOL, then B, is treated as if it is zero. Discuss-

ions of tolerences may be found in [12, 15, 16].  Similar tolerance tests

Sk . el 2




would ordinarily be incorporated in the other algorithms to be presented

in this exposition. To simplify the presentation they have been omitted here.
Justification for ALG 1 is given in [5]. At terminationm, B.l =

EEE'PI > ois El. Furthermore, we see that for nonspike colummns, each

B and consequently each n has exactly the same number of nonzeroes as the

corresponding column of B. However, the n for a spike column may have
a higher density than the original column of B. The phenomena of an
n having a higher density than the corresponding column of B is known
as g4lL-4in.

It is well known that fill-in may be reduced by applying an elimi-
nation form factorization rather than the product form (see [1]). The

elimination form algorithm for an HR matrix is given as follows:
ALG 2: ELIMINATION FORM FACTORIZATION FOR A HR MATRIX

0. Initialization
Set 1«1, r «+ 0, and B + B(1).

1. Obtain New Lowen Eta

1/81, for k = 1

Set - 'Bklei’ for k > 1

L™
0, otherwise,

4 n, for k = 1
and set L (k) +

ck, otherwise.

(Note: only nand i need be saved in the Eta File for the lower factors)




2. Test For Termination
1f i = m, terminate; otherwise, i + i + 1.
! 3. Test For Spike
1f B(i) is not a spike, set § + B(i) and go to 1.
4. Spike Update
Let B(k) correspond to the first columm of the external bump
contititng B3 ioet 8 wat T s o tFaE)
5. Swap Spikes If§ Pivot Element Equals Zero
1f Bi # 0, go to 6; otherwise, there is some spike B(j) in
the same external bump having j > i such that the ith component
= - k.
of Li 1. Lkn(j) is nonzero. Set B + Li 1... L B(j) and inter-
change B(i) and B(j).
6. Obtain New Uppen Eta
Setr+r+1
l, for k = i
Set nk - -Bk, for k < i
0, otherwise,
;i ﬁ, for k= 4
! set Ut (k) «
i ek, otherwise,
and go to 1.
(Note: only N and i need be saved in the Eta File for the upper factors)
8
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At the termination of ALG 2, B.l = U1 sor LT 20 Ll, where the upper

eta's are upper triangular and the lower eta's are lower triangular. As

with ALG 1 fill-in has been restricted to the eta's corresponding to spike

columns.




III. SPLITTING THE BUMP

In an attempt to reduce the fill-in which occurs in spike columns
during a reinversion using ALG 1, a variation of the elimination form
factorization algorithm (attributed to Martin Beale, see [13]) has been
used by some practitioners. This technique has been called "splitting
the bump" after its treatment of external bump columnms.

Consider a set of columns of the basis corresponding to an external

bump, say

where F is an external bump. Suppose F contains q spikes. If we apply

the standard product form algorithm, we obtain a sets of eta's such that

B By el 1 }n

}e

The eta's corresponding to the q spikes may incur fill-in. If we split
the bump, the fill-in can be restricted to the n rows corresponding to

F; hence, we may avoid fill-in in the last p rows. Since p may be much

10
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larger than n, the savings could be substantial. The price which must
be paid to attain this reduction in fill-in is that each external bump
will require 2n + q eta's rather than n. The savings in fill-in is
typically so great that it offsets the additional storage which must be
given up for the additional eta's.

We first develop a set of n eta's such that

£ ... elp’ - 7 :}n

where Fl has +1's on the diagonal and zeroes below the diagonal. The
only columns having nonzeroes above the diagonal are spike columms.

Next we zero out the spikes in Fl by developing q eta's such that

o T N M 1

Finally, we zero out the H via the addition of n more eta's. That is,

g2ota L., g pl3
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The product form algorithm incorporating the "splitting the bump"

technique is given as follows:

ALG 3: PRODUCT FORM FACTORIZATION FOR A HR MATRIX INCLUDING SPLITTING
THE BUMP

0. Initialization

Set i +1, j+ 1, and B « B(1). If B(1l) is in an external bump,
to to 4.

1. Obtain New Lower Eta

1/81 ’ for k = f
‘n “
k
_Bk/B T otherwise ,

j n, for k = 1
and set E7 (k) «

ek, otherwise.

Set j «+ j + 1.

2. Test For Termination
If i = m, terminate; otherwise, 1 « 1 + 1 and B + B(1).
3. Test For External Bump
If B(i) is not the first column in an external bump, go to 1.

4. Initiatization For Bump

Set L+
s+ 1
b + number of columns in this external bump
te«i+b=-1
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10.

Obtain Lowenr Eta

1/81, for k= {1

Set e B, /By for 1 <k <t
0, otherwise,
3 n, for k = 1
and set E’ (k) «
k

e , otherwise.

Set j + 3 + 1.

Test For End Of Bump

If i = t, go to 10; otherwise, i «+ i + 1.

Test For Spike

If B(i) is not a spike, set 8 « B(1i) and go to 5.
Spike Update

set 8« B0 ... E'B(0).

Swap Spikes 1§ Pivot ELement Equals Zero

If 81 ¢ 0, go to 5; otherwise, there is some spike B(r) in the

same external bump having r > i such that the ith

component of
gl ... Ezn(r) ie nonzero. Set 8« p371 ... Ezn(r), interchange
B(r) and B(i) and go to 5.
Obtain Upper Eta

l, for k = 1
Set % ~By» for k < 1

0, otherwise,

13
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and set Ej(k) «

11.

12.

13.

14.

and set EJ (k) +

n, for k = 1

ek, otherwise.

Set j+ j+1landdi<+{i-1.

Test Fon Beginning 0f Bump

1f 1 = g, set B + B(i) and go to 13.
Test For Spike

If B(i) is not a spike, set i + 1 - 1 and go to 11; otherwise,

set B + Ej-l eae Ezn(i) and go to 10.
Obtain Lowen Eta

1, for k = 1
Set nk + -Bk. for k>t
0, otherwise,

n, for k = 1
ek, otherwise.
Set j 5 + 1.

Test For End Of Bump

1f 4 = t, go to 2; otherwise i + 1 + 1, set B + B(i), and go

to 13.
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At the termination of ALG 3, B L = 3™ ... E'. Furthermore, all
eta's are either upper triangular or lower triangular, but they are
intermixed.

Recall that ALG 2 produces a set of lower triangular factors
followed by a set of upper triangular factors. If one incorporates
the "splitting the bump" technique into ALG 2 and apply it to an HR
matrix, the lower and upper factors become intermingled. Once the
factors have become intermingled, we may no longer use the important
algorithm of Forrest and Tomlin [2] to maintain the elimination form.
We now show how one may achieve a partial "splitting of the bump"
while simultaneously maintaining a partitioning of the upper and lower
factors.

Recall that sn HR matrix takes the following form:

ALG 3 (Product Factorization With Splitting The Bump) eliminates all

fill-in in !5. By a rearrangement of rows and columns, B may be placed

in the following form:




53 36 55
e 3l
Bl. 32

6

where B° and 'B's are row permutations of B6 and Bs, respectively, and

3 1s a row and column permutation of B>. Applying a varistion of

ALG 2 to B eliminates all fill-in in B° while representing B L as a

product of upper factors followed by a product of lower factors. The

details are given in the following algorithm.

ALG 4: ELIMINATION FORM FACTORIZATION FOR A MODIFIED HR MATRIX
0. Initialization

Set 1 +u+1and B+ B(1). If v=0, goto 3.

1. Obtain New Lower Eta

1/81, for k = 4
Set L ‘33’31- for k > 1

0, otherwise ,

i N, for k= 4
and set L7(k) «

ck, otherwise .

16
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Test Fon End 04 Section 2

Set i+i+1landB+B({). Ifi<u+v,gotol. Ifw=0,

to to 8.

Obtain New Lower Eta

1/81. for k= 1

Set " . -Bklsi' for k> 1

0, otherwise

1 n, for k = 1
and set L7 (k) «

.k, otherwise,

Test Fon End 0f Section 3
If 1 = m, go to 8; otherwige, 1 «+ 1 + 1.

Test For Spike

If B(1) is not a spike, set 8 « B(i) and go to 3.

Spike Update

set £ + 13" o 15,

Swap Spikes 1§ Pivot Element Equals Zero

If 81 ¢ 0, go to 3; otherwise, there is some spike B(j) in the
same external bump having j > i1 such that the 1“’ component of
Li.l eve LY "li(j) is nonzero. Set B + Li-l IlIlui(:j).

interchange B(1i) and B(j) and go to 3.

17




8. Obtain New Upper Eta
l, for k=1
Set e * -Bk’ for k < 1
0, otherwise,

i n, for k= 1
and set U (k) «

ek. otherwise.

9. Check For End 04 Section 2
Set i+« i-1. If i =0, terminate.

If 1 = y, set B + B(1) and go to 12.

10. Set Cofumn

If i >u+r, set B + I.:l ses L li(:l); otherwise,

set B « B(1). Go to 8.

11. Obtain New Upper Eta

1/81, for k= {1
Set U ‘33’51' for k < 1

0, otherwise,

n, for k= §
and set U"(k) +

ek, otherwise.

12. Check For Termination

If 1 = 1, terminate; otherwise .8 + B(i) and go to 11,

9 94 15 020
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At the termination of ALG 4, B "% = g% +o+ U™® vov 1] and the £il1-1n
has been restricted to Bz. Hence, ALG 4 gains some of the benefits
of the "splitting the bump" technique while maintaining a partition-
ing of the upper and lower factors. The benefits are not as great
as with ordinary "bump splitting" since each individual external bump
is split, whereas here the split is with respect to the entire heart
section.

A variation of ALG 4 has also been used by Tomlin [15]. Our
contribution is that we have tied together the ideas of "splitting
the bump” in both the product and elimination form factorizations
and we have explicitly indicated via ALG's 3 and 4 how these may be
implemented.
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